Nostocoida limicola

Resembles:
- *N. limicola* III: more robust filaments
- "Cand. M. parvicella": filaments do not stain grey-violet with Neisser
- Several *Alphaproteobacteria*: hybridise with probe ALF-968

Probes: not available, see remarks

Frequency occurrence (200 samples; 175 WTPs):
- observed with a FI ≥ 1 in 1 sample
- observed with a FI ≥ 3 in 1 sample

N. limicola I plus two M. parvicella filaments

Characteristics
- bent/coiled, frequently tangled filaments;
- not motile;
- not branched;
- filament length > 200 µm;
- cell diameter 0.6 - 0.8 µm;
- sheath absent;
- attached growth absent;
- septa usually hardly visible;
- disc shaped or spherical cells;
- no sulphur storage;
- Gram positive;
- Neisser positive: filaments stain entirely grey-violet.

Remarks
The *Nostocoida limicola* story is a little bit complicated and confusing. Three, Gram and Neisser positive, *N. limicola* morphotypes can be distinguished by applying phase-contrast microscopy [3]:
- *N. limicola* I: cell septa hardly visible; diameter 0.6 – 0.8 µm
- *N. limicola* II: cell septa visible; spherical to disc shaped cells; diameter: 1.0 – 1.2 µm
• **N. limicola** III: cell septa visible; discoid to disc shaped cells; diameter: 1.2 – 1.5 µm. Note: The larger diameter range mentioned in reference 4 was based on outdated evidence and is therefore not valid any longer.

As **N. limicola** II is not very often observed and, moreover, closely resembles **N. limicola** III, it has been proposed to use the latter name for both morphotypes [4]. However, the name **N. limicola** II is still mentioned in published papers.

Filamentous morphotypes resembling **N. limicola** filaments are frequently observed in WTPs treating industrial wastewater. It is now known that many of these morphotypes belong to the **Alphaproteobacteria**. Group specific (ALF-968) and several species specific probes are available and are needed to distinguish them from the **N. limicola** morphotypes.

Several papers have been published in recent years in which it is stated by the authors that pure cultures of **N. limicola** resembling filaments were obtained [2, 7, 8, 11]. Subsequently, probes were developed based upon these pure cultures [9, 11,12].

1. It has been assumed that probe NLIMI-91 should hybridise with **N. limicola** I [9, 12]. A fluorescent signal with this probe was obtained in 12 out of 126 Dynafilm samples. The size of the population giving a signal was usually small (1 on a scale ranging from 0 to 4). The probe positive filaments were, one sample excluded, very short (length < 50 µm) and composed of almost spherical cells with a diameter of ca. 1.3 µm. Thus, the appearance of the probe NLIMI-91 positive, short filaments present in the Dynafilm samples was very similar to that in the original paper [9]. Considering that morphotype **N. limicola** I looks completely different (long curled and tangled filaments with a diameter of circa 0.8 µm), it is concluded that probe NLIMI-91 does not hybridise with **N. limicola** I. Filaments with the appropriate **N. limicola** I morphology, were observed in just one Dynafilm sample. These filaments did not hybridise with probe NLIMI-91. Hence, it is concluded that identification of morphotype **N. limicola** I through FISH is still not possible. A German research group reached a similar conclusion [10]. Probe NLIMI-91 can only be used for the identification of **Trichococcus** species, filamentous micro-organisms which have only a minor role in bulking of activated sludge.

2. Probe NLIMII-175 was developed starting with sequences of pure cultures, described in reference 2 as "**Candidatus** N. limicola", which were classified as members of the **Actinobacteria**. The pure cultures stained Gram and Neisser positive. This probe should allow the in situ identification of **N. limicola** II [9, 12]. Filaments hybridising with this probe were present in 9 Dynafilm samples and they were identified by phase-contrast microscopy as **N. limicola** III filaments. Thus, probe NLIMII-175 cannot be used for the in situ identification of morphotype **N. limicola** II, but targets **N. limicola** III.

3. Probe NLIMIII-301 should allow the identification of **N. limicola** III through FISH [8, 9, 12]. A fluorescent signal with this probe was obtained in 13 samples. The filaments hybridising with probe NLIMIII-301 were rather short and composed of spherical cells with a diameter ranging from 1.5 µm to 1.8 µm. These filaments did not at all resemble the characteristic long, tangled **N. limicola** III filaments, composed of disc shaped cells, but instead those of a bacterium known as an **Isosphaera** sp. This conclusion is in agreement with the evidence presented in reference 10.

4. Ten **Nostocoida limicola**-like pure cultures, with an almost identical 16S rRNA sequence were isolated from domestic WTPs in Germany [11]. They were classified as members of the **Chloroflexi** (green non-sulphur bacteria). The pure cultures stained Gram positive and Neisser negative. Based upon their sequence, probe AHW-183 was developed and applied for the in situ identification of filaments in activated sludge. Fluorescent signals were only obtained with domestic sludges. The filaments hybridising with AHW-183 indeed closely resemble those of morphotype **N. limicola**. They were mainly observed inside sludge flocs. Considering the Neisser negative staining results, it seems likely that this probe does not hybridise with **N. limicola** I or III. Unfortunately, probe AHW-183 was not applied during the Dynafilm research program.
In conclusion, when the *Alphaproteobacteria* are excluded, four *N. limicola* morphotypes can be observed in activated sludge:

- **N. limicola** I: long, coiled and tangled filaments with a diameter of ca. 0.8 µm. The cell septa are hardly visible. Gram and Neisser positive. The phylogenetic position is not known and a probe is not yet available.
- **N. limicola** II: compared with *N. limicola* III, more spherical shaped cells and a somewhat smaller diameter. A probe is not yet available.
- **N. limicola** III: long, coiled and tangled filaments composed of discoid cells with a diameter of ca. 1.3 µm. Gram and Neisser positive. *N. limicola* III is a member of the *Actinobacteria* and can be identified through applying probe NLIMII-175.
- **N. limicola** IV: long, coiled and tangled filaments composed of discoid cells with a diameter of ca. 1.0 µm. Gram positive and Neisser negative. *N. limicola* IV is a member of the *Chloroflexi* and can be identified through applying probe AHW-183.

The morphotypes *N. limicola* II and IV are not discussed in separate lemmas on this CD-ROM.

Physiology
Reliable information about the physiology of morphotype *N. limicola* I is not available.

Occurrence in activated sludge
Morphotype *N. limicola* I was only observed in a WTP receiving a mixture of domestic and industrial wastewater. Thus, it is concluded that morphotype *N. limicola* I uses components present in domestic wastewater for its growth, viz. it is a typical “domestic filament”, just like the classical "*Candidatus Microthrix parvicella*".

N. limicola I does not occur frequently in domestic plants. This morphotype has occasionally been observed in nutrient removal plants where a load ranging from 0.05 to 0.1 kg BOD/kg MLSS.day was applied. Just like *M. parvicella*, *N. limicola* I contributes to foaming and scum formation of activated sludge.

Control options
The common possibilities aimed at solving a bulking problem are listed below (1-7). Full scale experience with controlling this filamentous morphotype is hardly available. The size of the population decreased in two plants where Al$^{3+}$ was dosed, aimed at controlling "*Candidatus M. parvicella*".

It is always recommended to start with a pilot scale experiment before a selected control method is applied on a full scale.

References for further reading about process control: 4, 5, 6 and 13.

1. Good "House-keeping".
2. Remove deficiencies: O$_2$ > 2 mg/l and BOD:N:P =100:5:1.
3. Two step configuration (aerobic/aerobic or anaerobic/aerobic), in order to remove most of the easily degradable influent fraction before this enters the aeration tank.
4. Aerobic selector.
5. Anoxic zone if sufficient nitrite/nitrate is available for removal of the dissolved fraction from the influent through denitrification.
6. Anaerobic zone if a combination with a Bio-P process is an option.
7. Controlling symptoms, viz. applying physical or chemical methods aimed at destroying the filaments or at improving the settling velocity of the flocs by increasing their weight.

References

Slide show images

- 1-7: Dynafilm sample
 - 1: morphology at a low magnification
 - 2-5: morphology at a high magnification
 - 6: Gram stained
 - 7: Neisser stained
- 8-11: Morphotype *N. limicola* I in domestic sludges
 - 8: plus *Candidatus Microthrix parvicella* filaments (left and right side)
 - 9: tangled *N. limicola* I filaments (plus some *M. parvicella* filaments)
 - 10: Gram stained
 - 11: Neisser stained (plus *M. parvicella*)
- 12: characteristic FISH image with probe NLIMI-91